Evaluation of Distributed Detection Methods for of Agile Targets

Felix Govaers

Dept. Sensor Data and Information Fusion Fraunhofer FKIE Wachtberg Germany

Likelihood Ratio Test

The Sequential Likelihood Ratio (LR) test is a statistically optimal algorithm to decide between two hypotheses:

- h_1 : there is a target.
- h_0 : there is no target.

The decision is inferred from measurements

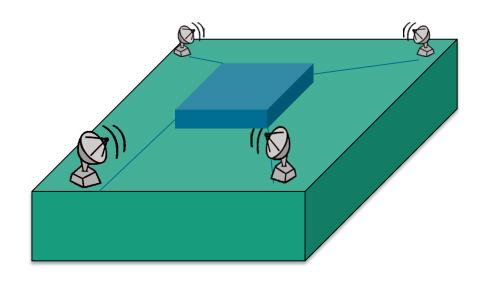
$$\mathcal{Z}^k = \{\mathcal{Z}_1^k, \dots, \mathcal{Z}_S^k\}$$

A decision is based on the iterative rule for k=1,2,3,...

$$\operatorname{LR}(k) = \frac{p(h_1 | \mathcal{Z}^k)}{p(h_0 | \mathcal{Z}^k)} \longrightarrow \stackrel{\operatorname{LR}(k)}{\underset{A < I}{\operatorname{LR}(k)}}$$

- LR(k) < A: accept h_0 , i.e. delete track
- LR(k) > B: accept h_1 , i.e. confirm track
- A < LR(k) < B: continue processing.

Track Confirmation with overlapping Field of View



• Naïve:

- Local tracks are accepted as confirmed
- Local Decision Fusion:
 - Weighted Mean of local existence probability
- Centralized:
 - All sensor data is transmitted to a Fusion Center (FC)

Distributed

• All sensors send sufficient statistics (\bar{p}^s) to the FC

Recursive computation of the LR

According to Bayes, one has

$$LR(k) = \frac{p(\mathcal{Z}^k|h_1)}{p(\mathcal{Z}^k|h_0)}$$

where

$$p(\mathcal{Z}^{k}|h_{i}) = p(Z_{k}|\mathcal{Z}^{k-1},h_{i}) p(\mathcal{Z}^{k-1}|h_{i})$$
$$\stackrel{i=1}{=} \int d\mathbf{x}_{k} p(Z_{k}|\mathbf{x}_{k},h_{1}) p(\mathbf{x}_{k}|\mathcal{Z}^{k-1},h_{1}) p(\mathcal{Z}^{k-1}|h_{1})$$

$$LR(k) = LR(k-1) \cdot \Lambda(k)$$
$$\Lambda(k) = \frac{\int d\mathbf{x}_k \ p(Z_k | \mathbf{x}_k, h_1) \ p(\mathbf{x}_k | \mathcal{Z}^{k-1}, h_1)}{p(Z_k | h_0)}$$

Distributed Kalman Filter (DKF)

The Distributed Kalman Filter (DKF) is based on the Product Representation:

$$p(\mathbf{x}_k | \mathcal{Z}^{k-1}) \propto \prod_{s=1}^{S} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}^s, \mathbf{P}_{k|k-1}^s)$$

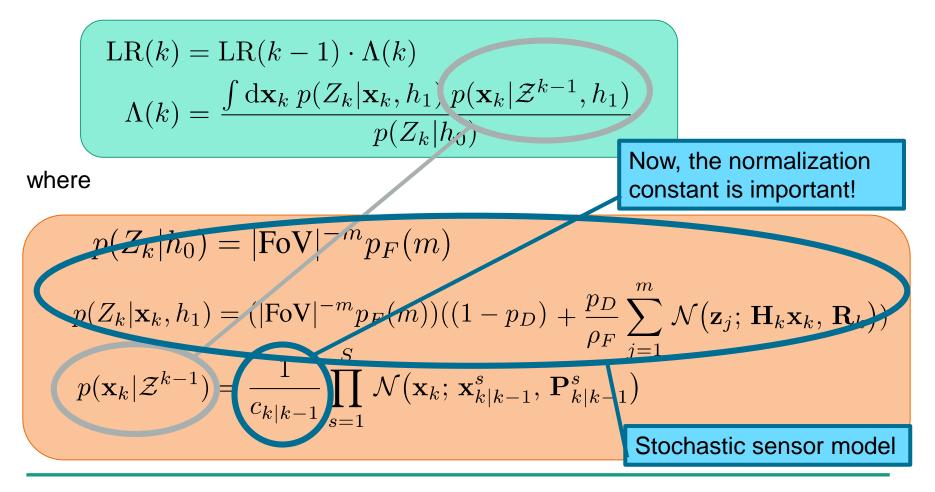
For *non-linear scenarios*, the **Federated Kalman Filter (FKF)** needs to be used, since the measurement model is data dependent.

One obtains an approximation:

$$p(\mathbf{x}_k | \mathcal{Z}^{k-1}) \approx \frac{1}{c_{k|k-1}} \prod_{s=1}^{S} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}^s, \mathbf{P}_{k|k-1}^s)$$

Distributed Sequential Likelihood Ratio Test

The LR score at time k is given by



DKF Normalization Constant

The normalization constant is given by

$$c_{k|k-1} = \int \mathrm{d}\mathbf{x}_k \,\prod_{s=1}^S \,\mathcal{N}\big(\mathbf{x}_k; \,\mathbf{x}_{k|k-1}^s, \,\mathbf{P}_{k|k-1}^s\big).$$

Algebraic manipulations yield

$$c_{k|k-1} = \prod_{s=1}^{S-1} \mathcal{N} \left(\mathbf{x}_{k|k-1}^{s+1}; \, \mathbf{x}_{k|k-1}^{(1:s)}, \, \mathbf{P}_{k|k-1}^{(1:s)} + \mathbf{P}_{k|k-1}^{s} \right)$$
$$\mathbf{x}_{k|k-1}^{(1:s)} = \mathbf{P}_{k|k-1}^{(1:s)} \sum_{i=1}^{S} (\mathbf{P}_{k|k-1}^{i})^{-1} \mathbf{x}_{k|k-1}^{i},$$
$$\mathbf{P}_{k|k-1}^{(1:s)} = \left(\sum_{i=1}^{S} (\mathbf{P}_{k|k-1}^{i})^{-1} \right)^{-1}.$$

Closed form solution for the integral!

Sequential LR Update for DKF

The updating factor of the LR is given by

$$\Lambda(k) = \frac{1}{c_{k|k-1}} \int d\mathbf{x}_k \prod_{s=1}^{S} \left\{ \left((1 - p_D) + \frac{p_D}{\rho_F} \sum_{j=1}^{m_s} \mathcal{N}(\mathbf{z}_k^{j,s}; \mathbf{H}_k^s \mathbf{x}_k, \mathbf{R}_k^s) \right) \\ \cdot \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}^s, \mathbf{P}_{k|k-1}^s) \right\}$$
Standard KF/EKF for each sensor node yields
$$\text{unnormalized} \text{hypotheses weights}$$

$$\Lambda(k) = \frac{1}{c_{k|k-1}} \int d\mathbf{x}_k \quad \left\{ \prod_{s=1}^{S} \sum_{j=1}^{m_s} p^{\star j,s} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^{j,s}, \mathbf{P}_{k|k}^{j,s}) \right\}$$

Normalization and Moment Matching

The normalized weights are given by

$$p^{j,s} = \frac{p^{\star j,s}}{\bar{p}^s} \qquad \qquad \bar{p}^s = \sum_{j=0}^{m_s} p^{\star j,s}.$$

Therefore:

$$\sum_{j=0}^{m_s} p^{\star j,s} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^{j,s}, \mathbf{P}_{k|k}^{j,s}) = \bar{p}^s \sum_{j=0}^{m_s} p^{j,s} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^{j,s}, \mathbf{P}_{k|k}^{j,s})$$
$$\overset{\mathsf{MM}}{\approx} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^s, \mathbf{P}_{k|k}^s)$$

Computation of Lambda

As a result one obtains

$$\Lambda(k) = \frac{c_{k|k}}{c_{k|k-1}} \prod_{s=1}^{S} \bar{p}^s \int d\mathbf{x}_k \ \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}, \mathbf{P}_{k|k})$$
$$= \frac{c_{k|k}}{c_{k|k-1}} \prod_{s=1}^{S} \bar{p}^s$$

where the posterior normalization constant is given by

$$c_{k|k} = \prod_{s=1}^{S-1} \mathcal{N} \left(\mathbf{x}_{k|k}^{s+1}; \, \mathbf{x}_{k|k}^{(1:s)}, \, \mathbf{P}_{k|k}^{(1:s)} + \mathbf{P}_{k|k}^{s} \right)$$

Conclusion: Distributed Track Existence Decision

 $\mathbf{P}^{s}_{k|k}$ \bar{p}^{s}

Local Sensor Nodes

Prediction: Relaxed Evolution Model

$$\mathbf{x}_{k|k-1}^{s} = \mathbf{F}_{k|k-1} \mathbf{x}_{k|k-1}^{s}, \qquad \mathbf{Tx:}$$

$$\mathbf{P}_{k|k-1}^{s} = \mathbf{F}_{k|k-1} \mathbf{P}_{k|k-1}^{s} \mathbf{F}_{k|k-1}^{\top} + S\mathbf{Q}_{k|k-1} \qquad \mathbf{x}_{k|k}^{s}$$

Filtering:

- Update state parameters with EKF / MHT / PDAF / ...
- calculate decision contribution

$$p^{\star j,s} = \begin{cases} (1-p_D) \\ \frac{p_D}{\rho_F} \mathcal{N}\left(\mathbf{z}_k^{j,s}; \mathbf{H}_k^s \mathbf{x}_{k|k-1}^s, \mathbf{S}_k^s\right) \end{cases}$$

Prediction: calculate prior constants using the Relaxed Evolution Model and the previous transmission:

$$c_{k|k-1} = \prod_{s=1}^{S-1} \mathcal{N} \Big(\mathbf{x}_{k|k-1}^{s+1}; \mathbf{x}_{k|k-1}^{(1:s)}, \mathbf{P}_{k|k-1}^{(1:s)} + \mathbf{P}_{k|k-1}^{s} \Big),$$

Filtering: calculate posterior constants using the new transmissions. Update LR score:

$$LR(k) = \Lambda(k) \cdot LR(k-1)$$
$$\Lambda(k) = \frac{c_{k|k}}{c_{k|k-1}} \prod_{s=1}^{S} \bar{p}^{s}$$

raunhofer FKIE

 $\bar{p}^s = \sum p^{\star j,s}.$

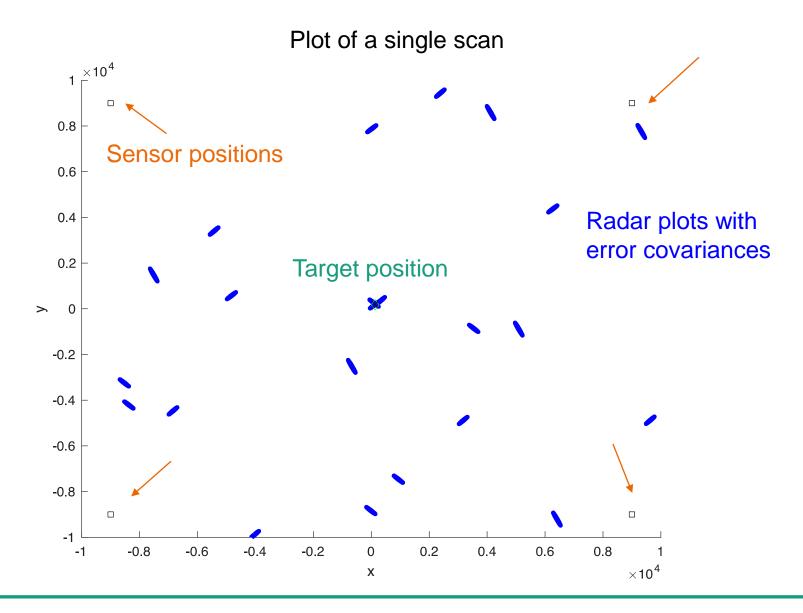
NUMERICAL EVALUATION

Simulation Setup

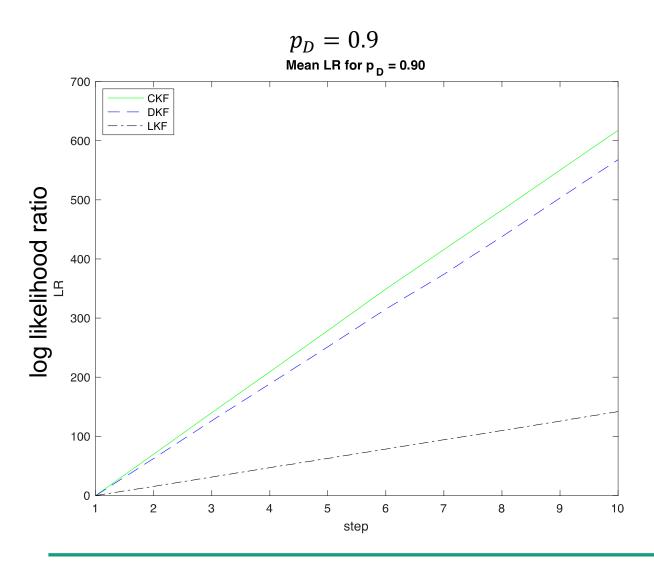
For the evaluation, a realistic multi-radar scenario has been chosen:

- 4 radars arranged along a circle of about 13 km radius
- Poisson distributed FA with mean 5 per sensor per scan
- The target, if present, has a process noise of psd = 10
- Probability of detection is $p_D = 0.2$, 0.5 and $p_D = 0.9$.
- A no target scenario is also considered
- We compare against:

- Centralized processing (CKF) for LR calculation (optimal)
- Decentralized mean of all local LR scores (LKF)

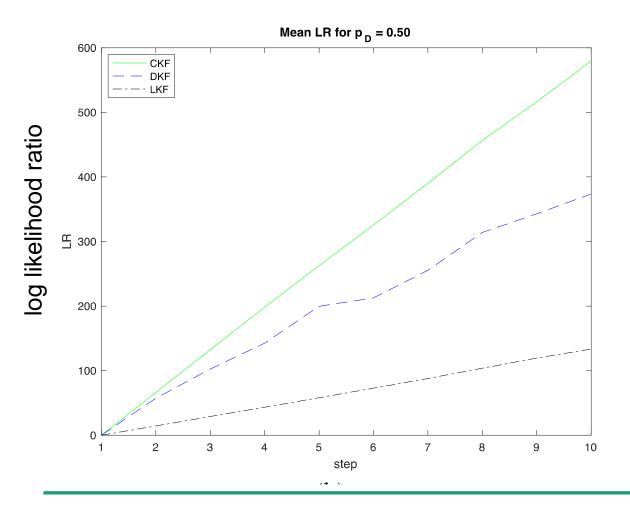


© Fraunhofer FKIE



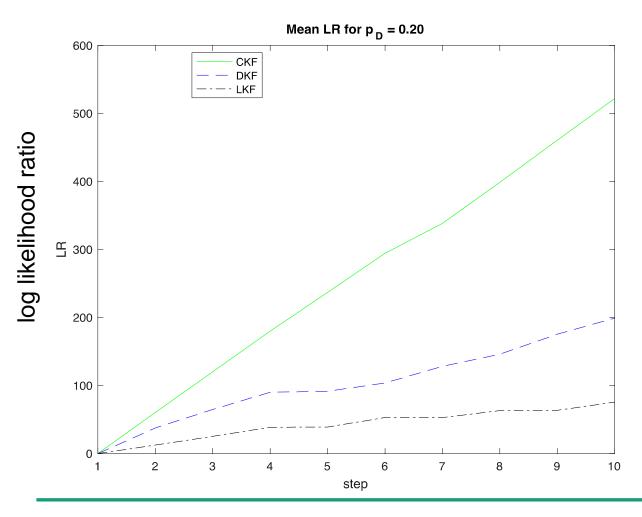
© Fraunhofer FKIE

$$p_D = 0.5$$



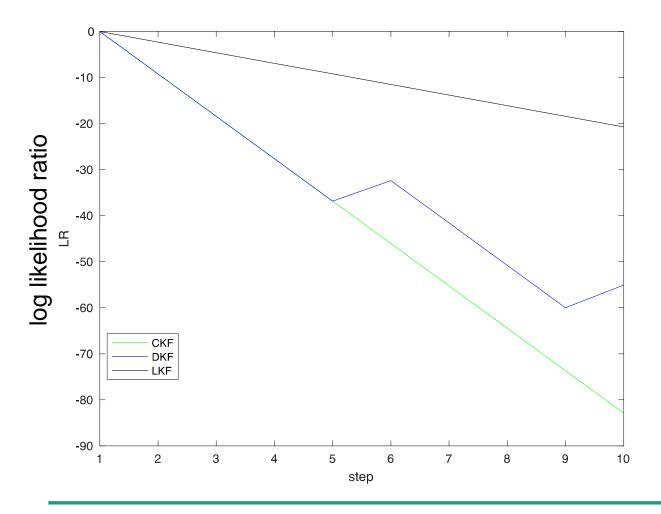
© Fraunhofer FKIE

$$p_D = 0.2$$



© Fraunhofer FKIE

No target



© Fraunhofer FKIE

Conclusions

- Sequential Likelihood Ratio test for Federated Kalman filter in non-linear applications was derived.
- Fusion center computes LR score based on single reel valued parameter from each sensor.
- The distributed calculation clearly performs better than averaging the local LR scores even with identical sensors parameters.

Site: Wachtberg, close to Bonn, Germany

<u>Contact:</u> Felix Govaers felix.govaers@fkie.fraunhofer.de 0228 9435 419

